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ABSTRACT

How a society manages to solve the problem of cooperation in a
prisoners-dilemma situation has been a major theme in economic theory.
In the present paper, we develop an evolutionary model with a structural
mutant called a knowledgeable (or cautious) dove, which is a dove in
nature but one programmed to invest in gaining the ability to identify
hawks and therefore avoiding their exploitation. We show that
cooperative behavior can persist within a large class of admissible and
compatible dynamics in the long run, either in the form of an asymptoti-
cally stable mixed population equilibrium or in the form of a stable
cycle. Discussing other conceivable mutants, we argue that this
persistent result is robust, which also matches our everyday observations
regarding both the persistence and differentiation of cooperative behav-
ior quite well.
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Introduction

The history of human society and its economic progress has been a history
of ongoing specializations and cooperations of individual activities. How to
realize the potential gains from trade is particularly important a problem in
the situation of prisoners’ dilemma (PD), where it is seemingly individually
rational (i.e. it is a dominant strategy) to cheat on the partner with the con-
sequence that nobody cooperates in equilibrium. The very puzzle to econo-
mists is however that in most of these situations cooperative behavior has
been exhibited so frequently that potential gains from trade have been real-
ized to some quite remarkable extent indeed, inspite of the coexistence of
noncooperative behavior. How can this be explained?

The traditional game theory has attempted to rationalize this observa-
tion via introducing repetition of the basic one-shot PD game played by
rational players. If repetition is infinite, the famous folk theorem is valid
which says that virtually all admissible payoff vectors can be sustained in
subgame perfect equilibrium, particularly the cooperative ones, (see e.g.
Fudenberg and Maskin (1986)). The famous “gang of four” paper by Kreps
et al (1982) tells us that finite repetition may be sufficient to provide cred-
ible threats to enforce cooperation when there is some slight inherent uncer-
tainty about the rationality of the opponent such that he may be believed to
be a Tit-for-Tat automata.

To explain the emergence and viability of the private judges system on
Champagne Fairs in the Middle Age and the role of institution in informa-
tion transmission, Milgrom, North and Weingast (1990) have a model where
players are randomly matched in each period to play the one-shot PD game.
No player in any period can fall back on any private information about the
opponent such that the usual punishment strategies for cooperation do not
apply. They argue that the presence of the private judges system, where
records on breaches of contract are gathered and offenders are sentenced to
fines on a voluntary basis, provides enough incentives for the cooperative
outcome to prevail. Kandori (1992) develops some collective, so-called “con-
tagious” punishment scheme that sometimes can sustain cooperation in the
above setting of anonymous random matching but without an institution
like the afore-mentioned private judges system. By introducing noises
attached to actions, Ellison (1993) can show that cooperation through conta-
gious punishment is not as vulnerable a result as it seems to be in the origi-
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nal setting by Kandori.

However, this rationality-based approach suffers from two general
shortcomings. First, it ignores the fact that human players are only of (often
very) bounded rationality. In addition, the solution concept of subgame per-
fection is logically not consistent with rationality as evidenced in the
famous centipede-game by Rosenthal (1981). Thus, as argued by Mailath
(1992), evolutionary models provide a suitable framework in this case. Fried-
man (1992) counts two basic requirements as responsible for the properness
of an evolutionary modeling. First, there must be some inertia in individual
reactions due to lack of information, adjustment delay, other decision costs,
etc., which lead to a more or less smooth aggregate population dynamic.
Second, players should not systematically attempt to influence others’
future actions, possibly due to lack of means or to their bounded- rationality
induced myopia.l This means that players treat the environment of their
decision as of some more or less regular but independent nature, quite simi-
lar to price-taking consumers in the general equilibrium theory.

The most crucial term in an evolutionary analysis is the dynamic
motion of aggregate behavior. At this aggregate level, the difference to
biological models of evolution, where individual players are carriers of
some inherited genotypes, lies only in the specific form of the dynamics
under consideration. Common to both, however, is the property that shares
of fitter strategies (respectively genotypes) in the population should increase
relative to less fit ones, regardless of how the population dependent average
fitness for a strategy (genotype) may be specified.

In this spirit, Axelrod (1984) provides the idea that cooperation in
repeated PD game can prevail in the long-run in form of the simple Tit-for-
Tat strategy which is to stick to cooperation with a built-in forgiving pun-
ishment against defection.2 Assuming that the complexity of automata
enters the fitness consideration in a lexicographic order next to the usual

1 Myopic players have been blended into a reciprocity model of cooperation in PD-like
contexts by Ghosh and Ray (1997) where non-myopic players have the option to stay
matched with the same partner for a long-term relationship. The presence of myopic
players serves as a disciplining device to make defections from a long-term coopera-
tion a very costly adventure. While the ongoing process of trust building towards co-
operation is illuminated vigorously, the population of the myopics has not been en-
dogenized which is exactly the missing link to a population-dynamic model.

2 See also discussions in Milgrom (1984).
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“limit-of-the-mean” payoff,3 Binmore and Samuelson (1992) show that a
population of merely the Tit-for-Tat type can not be evolutionarily viable
as it can be invaded by the simple cooperation-forever type. A nasty simple
strategy called Tat-for-Tit, however, is viable. The latter starts with defec-
tion and switches to cooperation as soon as the opponent defects as well.
This cooperation phase ends whenever the opponent defects, which will
jump-start the automaton anew. The very virtue of this nasty machine is its
ability to exploit the naive cooperating type but not exploited by defecting
types while entering a cooperation with peers.

This basic feature of Binmore and Samuelson (1992) is also related to
the so-called “secret-handshake” model by Robson (1990), where only the
one-shot PD game is played in any matching period. It is obvious that
defection-only is the only long-run stable state in this setting. This state,
however, can be (locally) invaded by a mutation type that bears the code to
cooperate if and only if the opponent is of the same mutant type. Peers of
this group can for example be identified by a red spot on the forehead.
Obviously, this mutant would drive the simple defectors to extinction, which
implies that only some kind of conditioned cooperation would survive in the
long-run. This however is a fallacy as Robson (1990) points out. An imitator
of the first mutant who carrys the same red spot but never cooperates has
substantial fitness advantage that will drive the original mutant to extinc-
tion. In fact, Banerjee and Weibull (1993) show in a generalized setting al-
lowing arbitrary conditional strategies that only those population states
that correspond to symmetric Nash equilibria of the basic game without the
sophisticated conditional types can ever survive evolutionarily. Hence, the
only stable state in a PD game modified likewise is the pure population of
defectors.

An essential feature in those models is that sophistication be costless
such that the extension with conditional types is analogous to the cheap-
talk extension in the traditional game theory.# Conceivable is yet the emer-
gence of mutant types that are a bit more sophisticated but have to bear
some cost accordingly,® so that, fitness-wise, they are not automatically

3 This means that bounded rationality results from the cost of complexity.

4 I am grateful to Jérgen Weibull for this interpretation.

5 See also Rosenthal (1993) for justifications of introducing “ad hoc” cost of complexity
in bounded rationality context and for more evidences of the predominance of
routined rather than optimized individual behavior.
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superior to any other existing type. Moreover, the nature of information
used for conditional actions is important for the mutant to survive against
invasions of further alien conditional types.

Frank (1987, 1988) has a completely different approach. His main con-
cern is to explain the observation that people often do things which hurt
themselves without expectation of any apparent (reciprocal) future advan-
tage from their deeds. E.g. people risk their own life to save others’ from
burning houses, iced rivers etc., or they leave tips to waitors in restaurants
of remote cities they never will visit again. In his theory, all these are sub-
conscious investments for people to increase their ability of creditibly sig-
naling that they are honest and cooperative, which help to overcome the
commitment, respectively hold-up, problem in cooperation. Viable signals
occur e.g. in form of sentiments which can not be imitated costlessly and
perfectly, in contrast to Robson’s (1990) red spot. If the signal observed indi-
cates that the partner is more likely to be a dishonest person, a rational
individual is likely to take his outside option of no trade and to wait for the
next potential partner to come around. Frank shows that only a mixed pop-
ulation can exist in any equilibrium. v

In the present paper, a slightly sophisticated type called Knowledgeable
Dove (or likewise “cautious” dove) is introduced into the world of the simple
types of Hawk (=defection) and Dove (=cooperation) in the PD game. Its
carriers are initially dove-patterned but have somehow developed the abil-
ity to detect the programmed action of their matched partner. The effort of
collecting necessary information reduces their fitness to some extent in
exchange for the ability to evade “exploitations”, for instance by rejection
of trade with a hawk. Depending on the current population state, every type
may have the highest average fitness, in contrast to the basic evolutionary
PD game and its Robson modification. Within this setting, there is always
an equilibrium of completely mixed population which may be even the
unique one. There are constellations in which it is asymptotically stable.
Even if it is not, there can be a cycle around it that is asymptotically stable.
This means that cooperation will persist forever. Particularly, all types will
be observed in the long run which meets our real world observations quite
well: Naive, gullible people often feel no need for higher-level sophistication
as far as there are enough cautious doves around such that exploitation by
hawks is not too severe a problem on avarage. There is a sound symbiosis
among different cooperative types. Compared to Frank (1987), our model
can be interpreted as stressing on the cost of decoding signals, so that honest
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people are divided into two classes, the cautious and the naive ones.5

This paper is organized as follows. The basic evolutionary framework
of PD game and its modification with the knowledgeable dove will be dis-
cussed in the next section where static equilibria are also characterized.
Section 3 is devoted to relevant notions of dynamic analysis in an economic
model of evolution with emphasis on admissibility and compatibility. The
persistence of cooperation in the long run and its robustness within a class
of compatible and admissible dynamics will be shown in section 4. This
occurs either in form of asymptotic stability of the completely mixed equi-
librium or in form of cycles flowing around it. Moreover, we discuss the
kinship-modified best-response dynamic as an example. Section 5 deals with
issues of robustness of the present model and of the persistence result
obtained as a whole. The last section contains some further concluding
remarks.

Models with Knowledgeable Doves

It is assumed that there is a continuum of members of a society who are
hosts of either of the behavior patterns, H (Hawk) or D (Dove). There is
also a continuum of time periods in which members of that society are
matched pairwise and randomly, say, to enter some joint venture with
potential gains from trade. The fitness respectively payoff a member
receives from this match in a period is shown in Figure 1.

D H
D| 3 0
H| 6 1

Figure 1. Fitness matrix in PD game

It says that D gets a payoff 3 respectively zero if he is matched to D
respectively H, while H receives 6 respectively 1 when meeting D respec-
tively H. This is a specific version of the famous Prisoners’ Dilemma (PD)
which is characterized by the property that H is the dominant strategy for a

6 In rationality-based models of PD aimed at rationalization of cooperation one gener-
ally obtains some cooperation-only result.
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rational player in a two-person game, being aware of the payoff conse-
quences illustrated in Figure 1.7

Now, let pxE€[0, 1] respectively po=1—pu be the proportion of H;s
respectively Ds in the population at some arbitrary time. The average fit-
ness for hawk is then 6pp+ px while that for dove is 3p» in the PD-game.
Assume that types of higher average fitness thrive over time while the pro-
portions of types of lower average fitness shrink, it is obvious that the dove-
type will die out as it always yields lower average fitness in whatever state.
In the real world, however, honesty has been frequently observed in the PD
context, which is apparently incompatible with this theoreticalconclusion.
Our goal in the present paper is to offer an explanation by introducing a
mutant behavior pattern: The Knowledgeable dove (K).

Let us assume that the carrier/host of K is programmed to invest some
fixed amount of fitness & >0 to investigate the programmed action of the
partner matched to her as to whether he is an exploiting type or not and
condition her action accordingly.® If her opponent is identified as a cooper-
ator, i.e. of either K- or D-type, she will play D as well. If the opponent is
believed to be a hawk, K is assumed to avoid the exploitation, via ways we
will discuss below, such that the encounter with K yields H the same payoff
as with a hawk. K’s payoff in this match is assumed to be higher than D’s
and nonincreasing in H’s share in the population. To attain her knowledge,
K may be able to properly decode some hardly imitatible signals like
expressions of sentiment, as in Frank (1987). Or she may conclude from
some pre-trade interaction with the matched partner.

Let p=(px, po, px)EA : ={x IR} : 3;cix:=1} denote the state of popu-
lation with I : ={H, D, K}, and c(-)= C" be a nondecreasing, continuously
differentiable function of px with ¢(0)=0, the (expected) fitness functions
for the types are given by

fu(p)=6pp+(1— pp)
fo(p)=3(1—pn) (1)
fx(p)=3—38—c(pn).

A population vector pEA is called a (symmetric) Nash equilibrium iff ()

7 This specific form is taken from Binmore (1992). More general forms will not change
the essence of our results.

8 As information and the act of conditioning is costly, it is reasonable to assume that Ks
are not necessarily distinguishable from Ds.
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=max;f;(p) whenever p.>0. The static implications of introducing the
K-type are summarized in the following result.

Lemma 1 Suppose there is a unique pu<(0,2/3) that satisfies 3pu—c(bu)=
0. Then, the set of Nash equilibria is:

{M} S (2-8)>1
NE={{M,N} < c'(2-0)=1
{M,N, 24} © c'(2-9)<1

where M=(Bn, Bo: =%(2—3—C(§H)), 1— Bu— Bo)EA,
Ne{p:po=0}, Ax=(1,0,0).

Proof: The lemma is a simple consequence of the following comparisons,
which are necessary and sufficient for determination of Nash equlibria.

Fu(D)Z fo(p) © 5pp+3pu—250
Io(D)E fx(p) © c(pr)—3pu+ =0
fk(D)E fu(p) © —5pp—c(pu)+2— =0

It is worth noticing that Lemma 1 remains valid for slight perturbations
of the assumed structure of expected payoff (1). Hence, K’s knowledge does
not need to be perfect to attain the validity of all the results claimed in the
present paper.” A graphic illustration of Lemma 1 is implicitly included in
Figure 2 in the next section. Note that the condition in Lemma 1 is a restric-
tion on the ¢ function, for which our model analysis works. The existence of
such ¢ functions is ensured by the three cases in the following.

The form of K’s fitness function has been taken fairly general which
allows for different motivations as to how Ks are to react when matched
with a hawk, how the costs of sophistication accrue to her, or which form of
interaction underlies the cooperation problem. Some special cases are dis-
cussed here.

Case 1: e(-)=6pg. Suppose that a voluntary trade in form of a PD game at
a random match is the concern here. While D and H are programmed to
enter the trade unconditionally, K will reject doing so with a hawk. Assume
that a period lasts so long till all members of the society have eventually

9 See Amann and Yang (1994) for a related model with imperfect knowledge for K.
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accepted some trading partner. The K-type has to invest the amount o for
each round before settling for a partner. After the first round there are just
equal numbers of Ks and Hs left without a trading partner as a consequence
of K’s behavior. After infinite rounds, every K must finally have found a D
or K to trade with. By subtracting expected costs of sophistication from
expected payoff from the trade entered, we have

fup)=3—(1— )5 —pud ( 5}2°*) @)
=3—0—0px (3)

It can be easily seen that if § <1 there is a unique NE M =(—3—_676, —g——%py,

1— pu— pp), while three Nash equilibria are present with N :(_2%6‘_, 0,1
—pr) if 6€(1,3/2).10

Case 2: ¢(+)=2pg. Think of the K-type as sticking to the principle “an eye
for an eye, a tooth for a tooth”. There is no outside option. Therefore, she
will use the strategy H when randomly matched with a hawk. In this case,
there are always three Nash equilibria. Alternatively, one can think of there
being some option for K to remain autark, as in Frank (1987). It is then
reasonable to assume that the autarky payoff is not lower than that when
two Hs meet. In the extreme case they are actually the same, c¢(:)=2px
results from this story. 11

Case 3: ¢(+)=0. If the above discussed rematching does not incur further
sophistication cost, we have c(-)=0. The only symmetric NE is M=(4/3, (2
—8)/5,(9—28)/15). We can imagine a range of models with re-matching
cost between 0 and 8»» where only one NE exists. A degenerate case is 0=
0 which implies that 100% K is the only NE, as K is superior to D every-
where and able to invade an H-society successfully.

10 Similar time feature allowing infinite matching rounds in an infinitesimal unit of
period can also be found e.g. in Binmore and Samuelson (1992). I am grateful to Erwin
Amann for pointing out the correct algebraical form of this “evasion of exploitation”
interpretation to me.

11 Holldnder (1993) provides an example of cooperated hunting among two prehistoric
hunters which suits this interpretation quite well. Also see Amann and Yang (1994).
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Preliminaries for Dynamic Analysis

Evolutionary models of multiperson interaction are interested in the aggre-
gate behavior pattern of the whole population and its evolution over time
which is determined by average fitness the subpopulations receive. Through-
out this paper, we will deal with continuous time, continuous state dynamics
only, which can be represented by some autonomous system of ordinary
differential equation (ODE) p=F(p), F : A~ IR®, where p=(pu, pb, bx) is
the vector of time rates of change of the state variables pu, po, px. Let us
start with a brief discusion as to properties any economically motivated
dynamic should have.

Admissible dynamics!?

To understand an evolutionary process is to determine the state the under-
lying dynamic system is in at any time, given the starting state. An admis-
stble dynamic system on some domain D is defined as a one-parameter fam-
ily of phase flow ¢.:D b D, tE[0, o), or equivalently, ¢::[0, co)x D D,
where

ps+t(x)=ps(@:(x)), VxED, Vs, t&[0, ) (4)

and ¢ is continuous. Moreover, ¢ is differentiable in ¢ from the right with
o*(¢, x) - =lim,.. 2L "Z:f(f' x)

A dynamic System is called C' if ¢ is defined for +&(o, o) and differ-
entiable in t.13 And F(x): Z%Lo o(t, x)=: £ € TxD is called the vector
field generated by the flow ¢ where 7xD denotes the tangent space of D at
x. F:D TD is also what we call an (autonomous) ODE. Arnold (1973, p.8)
illuminatingly points out that “. . . the task of theory of ODE is to recon-
struct the past and predict the future of the process (¢) from a knowledge of
the local law of evolution (F).” The fundamental theorem of ODE (see
Appendix) solves exactly this task for an open domain D.

Evolutionary dynamics applied in economics are, however, often discon-
tinuous in nature such that this fundamental theorem of ODE is not suffi-
cient for the analysis. For any arbitrary set S, let S, 88 ,and S denote the

12 Readers with minor interests in the formal arguments may ignore this notion.
13 See Hirsch and Smale (1974).
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interior, the boundary, and the closure of S. Let D be the compact simplex
A of an Euclidean space. An economically motivated dynamic on A often
can not be continuously extended to its boundary, e.g. the linear dynamic
discussed in Friedman (1991). Frequently, it may not even be continuous in
A, e.g. the best-response dynamic by Gilboa and Matsui (1991). Nevertheless,
these specific dynamics (i.e. characterizations of the local law of evolution)
can entail meaningful solution paths that correspond exactly to some admis-
sible dynamic systems as defined above, but not C ! The major difference is
that, while the future in these systems is still uniquely defined, different
histories to the same future are possible. Moreover, the path ¢.(x) is no
longer differentiable in ¢ everywhere. This however deos not bother econo-
mists very much, as they are mainly interested in the system’s long-run
behavior in the future only.

Definition 1 A dynamic (vespectively vector field) F :A-IR® is called
admissible if
1.3er Fi(x)=0,VxEA, i.e. F:A> TA.
2.F(x)=0 if x:=0, i.e. F is inward pointing on JA.
3. There is a unique admissible dynamic system @ satisfying ot(t, x)=
F(e(t, x)), for all xEA and t=0.

A set of sufficient conditions for F to be admissible, which substantiate the
meaning of admissibility wherever referred to in the rest of the paper, is
discussed in Appendix. F has essentially to be a C' map on A upto some
nowhere dense set, and to behave there well enough to allow the pieced
together solution system @ to be continuous in the state variable x.

Economically compatible dynamics

In most economic models, fitness is to be interpreted as some kind of (more
or less) abstract, expected payoff: profit, utility, market position, etc. or
some mixture of them. Dynamic changes are interpreted as aggregate
results of individuals’ imitation of more successful strategies (in particular
those of closer relatives), adaptation to mainstream, learning via informa-
tion, etc., besides the biological interpretation of natural selection. Some
fundamental inertia is assumed such that the aggregate process attains the
form of a more or less smooth flow.14 It is often difficult to justify any

14 Cf. Friedman (1992) and Mailath (1992) for further discussions on this issue.
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specific form for the underlying dynamic. However, economists generally
agree on some minimum requirement a reasonable dynamic in an economic
model has to satisfy: populations of fitter strategies should increase relative
to less fit ones over time — analogously to evolution of genotypes in biol-
ogy.

Definition 215 A dynamic F is called (weakly) compatible, respectively
order-compatible, with fitness function f, if

1. <F(p), f(p)> =0 V pEA, respectively F:p)> Fi(p) whenever f.(p)>f{p),
and

2. F(p)=0iff, Vi€l p:+0 implies fi(p)=max,e:r fi(p).

pp=1 pp =1
I 1
[ < b
A%
o V ot
N\
A4
pk =1 a” b~ pe=1 prk=1

(a)NE={M}. Order-compatibility.
(NE={M, N, Ax} and compatible vector fields.

Figure 2. Fixed point and compatibility

A graphical illustration of compatibility in our model can be found in Fig-
ure 2. Here, a*a™, b*b~ and ¢* ¢~ correspond to equations fx=fp, fu=fp and

15 Our definitions of compatibility are slightly different from the ones by Friedman
(1991) as revival of extinct strategies is not allowed in his, which entails the unpleas-
ant property that additional corner fixed points arise that are not (Nash) equilibrium
of the underlying fitness function, and, that the boundary of A becomes artificially
invariant. For this reason, we also stress on admissible dynamics in the Appendix
that do not induce “alien” fixed point.
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fa=fx and fitness relations in different regions are (I) fa > fo > fx, (II) fu > fx
> fo, D) fx > fa>fo, AV) fx>Fo>fu, V) fo> fx > fu, (V1) fo> fu>fr. It is
easy to see in Figure 2.(b) that points N and Ax are also FPs.

Since px=— pu— pp, compatibility <p, F(p)>=0 implies (pu, po)T(f«
— fx, fo— fx)=0. The arrows correspond to the normal vector (fu— fx, /o
— fx) in different state p. Graphically, compatibility is to require that the
dynamic has to point to any direction on the positive halfspace generated by
the according normal vector, i.e., on the arrow-pointed side of the orthogo-
nal vector. According to the signs in the normal vector, A can be devided
into four different areas by merging (I) with (VI) and (III) with (IV).

While the space of a compatible dynamic varies in each region (I) to
(VI), dependent on the normal vector, that of an order-compatible one
remains constant. In fact, each of the lines pu=po, pu=—2p0, PH=——2“I)D
divides the plane into two halves corresponding to pxS po, Pr'S px, Po'S Dx.
Together, they partition the tangent plane into six pieces, each of which
corresponds to one of the regions (I) to (VI) as a consequence of order-
compatibility. Notice however that order-compatibility implies compatibili-
ty.lﬁ

Notions for stability analysis

Let p(¢, x) subsequently denote the solution path (trajectory, flow, orbit) of
F starting in an initial state xEA, i.e. p(+,*) is used instead of ¢. An arbi-
trary set BEA is called invariant if VxE B, VtE[0, o0), p(¢t, x)EB, i.e. the
solution path starting from any arbitrary x < B is contained in B complete-
ly.

Let Lo(x): ={(yEA| 3{tn, nEIN}C[0, 00) : p(ts, x)2—5 y} be the w-
limit set starting from x. An invariant set BEA 1is called asymptotically
invariant (or attracting) if for all open set U1D B there is an open set U with
BC U,C U, such that VxE U, : Lo(x)S B and p(¢, x)€ UiVt =0.

If x is the only element in an invariant set, it is called a fixed point (FP,
equilibrium or stationary point) of the dynamic F which has the property
that p(¢, x)=x Vt, i.e. the unique solution path starting in x is to stay in x
forever. This happens iff F(x)=0 which is true for a compatible dynamic iff
x is a Nash-equilibrium of the fitness function. A FP x* is called
asymptotically stable if x* is an asymptotically invariant set. The basin of

16 For more general (geometric) discussions of compatibility, see Friedman (1991, 1992).
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attraction of x* is then the set Bx*={x'€A: lim;--p(¢, x)=x*}. Obviously,
By* is an invariant set as well.

Let us define a closed orbit y to be a flow with the property that when-
ever p(A, x)=x for some A>0 it follows that p(nd, y)=y VuE€IN, yEvy. v is
invariant. A limit cycle is a closed orbit y such that yC L,(x) for some x< y.
A limit cycle y is asymptotically stable if y is an asymptotically invariant set.

Persistence and Asymptotic Stability of
Cooperative Behaviour

From a static point of view, the very feature induced by the introduction of
the K type is that there is now a new, completely mixed equilibrium M. It is
however straightforward to show that M is not an evolutionarily stable
strategy in the sense of Maynard-Smith (1982). In what follows we show that
cooperation can still be asympotically persistent nevertheless, which is pre-
cisely what we observe in reality.

A glance at Figure 2, tells us that close to the mixed FP M the dynamic
system should flow around M clockwise. In general, M itself may not be
asymptotically stable. Even if it is asymptotically stable, what turns out to
be true under some further conditions, it does not mean that the (simplified)
society will stay there in the long-run. There may exist stable cycles, other
attractors or even chaos. If M is the only FP, the persistence of cooperation
in the long-run is ensured for all compatible dynamics, since the state pap=1
is never stable in this case. Unfortunately, this unconditional persistence of
cooperation is not available if there are three FPs. Hence, we have to look
for conditions under which this persistence is a robust property, i.e. M is
either (locally) asymptotically stable or contained in an asymptotically
invariant set.

A very useful tool for our analysis is the classical result by Poincaré-
Bendixson which tells us that in the plane the limit set of a flow of a smooth

dynamic must be either an equilibrium or a closed orbit or some mixture of
both.

Proposition 1 Let M be the unique FP, F be C' on A, admissible, compat-
tble, and possess only finitely many cycles, then either is M asymptotically
stable or there is an asymptotically stable closed orbit surrounding it.

Proof: Basicly, apply the Poincaré-Bendixson Theorem in the manner of
Hirsch and Smale (1974). In details, suppose M is not asymptotically stable.
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This implies that IJx€A:M& Lo(x). From the generalized Poincaré-
Bendixson Theorem (appendix), Lo(x) must be a closed orbit, since M is the
only FP of F and L.(x) is obviously nonempty and compact as A is com-
pact. It is well-known that there is always a FP in the open set enclosed by
any closed orbit in A (see Hirsch and Smale (1974), Theorem 2, p.252).
Hence, M must be in the interiors of all closed orbits which are ordered by
their distances to M. Since the set A,:={y|y=Lu(y), y& 7} is open for any
closed orbit 7, if U is the open set between two neighbour closed orbits 7, a,
then either UC A, or UC A.. Let 7: respectively U, i=1, ..., n, denote the
given closed orbit respectively the open sets they enclose, where 7: is closer
to M than 7; whenever < j. It is obvious that A, N Ui and A, N(A\Uy)
+0 if y.#0A. Hence, there necessarily exists some :E{1, ..., n} such that
AN U:&0 and AN (Uin\U:)&8 which implies A= Uit \(Ui-1U 7:U 7:21),
i.e. 7: is asymptotically stable. If y,=0A, it may happen that JA is the only
asymptotically stable closed orbit.

The 3-FP case is a bit less favourable as the hawk-only FP is always
asymptotically stable. Some conditions ensuring local robustness of persist-
ence of cooperation can still be characterised. Let us call a closed orbit y
locally repelling, if 3x< vy, €>0 and an open neighbourhood of x, U, such
that diam (L(x"), 7)> ¢, Vx'€Ux. We then have the following result.

Proposition 2 Consider the 3-FP case. Let F be C' on A, admissible, com-
patible, and of finitely many closed orbits. Then, Au is asymptotically stable
with the basin of attraction Bu. Moreover, if M is not asymptotically stable
but there exists some locally repelling closed orbit, then there exists some
asymptotically stable closed orbit y CA\Bu. The third FP, N, is never stable.
Proof: If Ax were not asymptotically stable there must exist a state x very
close to Ax such that p(+, x) is leaving the boundaries. This means p(¢, x)=
F(p(¢, x)) can not be compatible with f at some time ¢. For the same rea-
son, N can not be stable.

If there is a closed orbit, then it must be contained in Bf:=A\(BxzU{M,
N})#0 enclosing M in its inner side because the FP N is on the boundary.
As argued in Proposition 1, if there are only finite closed orbits then one and
only one of the two neighboring closed orbits must be the limit cycle for all
point in the open set between them. If one closed orbit is locally repelling,
then due to the finiteness of closed orbits, it can not be the limit cycle for
either of the neighboring open sets. Similar argument as in Proposition 1
ensures the existence of an asymptotically stable closed orbit enclosing M.
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Compatibility has so far been the only requirement imposed on
dynamics we consider meaningful for our problem. In this sense, the robust-
ness of persistence of cooperation is very striking a result. However, as the
conditions required (particularly in Proposition 2) are quite abstract, it is
not self-evident that the set of dynamics covered is not empty. This
nonemptyness results from our subsequent analysis of a variant of the well-
known best-response dynamic which is also of interest to the theory for its
own sake.

Kinship-Modified Best-Response Dynamic

Gilboa and Matsui (1991) analyse a very simple dynamic for economic set-
tings that can be easily dealt with geometrically — the so-called best-
response (BR-) dynamic. Let B(p) be the best response correspondence of f,
ie.

B (p)=simplex spanned by {j : fi( p)zm?x F(p)}.
For arbitrary @<(0, 1), this dynamic is defined as
p=F*(p)=a(B(p)—p)

where B(p) is some selection of G(p), such that 8(p)=p whenever p is a
Nash equilibrium of f. The interpretation for this is that each of the contin-
uum of players is inclined to behave myopically so as to take the best-
response strategy with regard to the current population state, but only a
fraction a of them will actually succeed in doing so, — because of the funda-
mental inertia inherent to any population dynamic.

Geometrically, the BR-dynamic requires trajectories that consist of
straight line sections pointing to the extremal points of A. E.g. if H is the
best reply to some current state p, then the flow will go along the straight
line connecting p with Ax=(1,0,0) as far as the path is still in the area
where H is the best reply. This implies also that the proportional relation
between the non-best reply strategies remains the same along that piece of
path. The idea here is that, whenever one has no reason why one sub-
population should shrink faster than another, the status quo ratio is used as
a proxy. An illustration can be found in Figure 3.

This dynamic is obviously compatible, but not necessarily order-
compatible. Apparently, for p&0A trajectories are kept staying in A, since
»:=0 implies F#(p)=>0. Moreover, the dynamic is not continuous on the line
sections b*M, a~M and ¢ M. For the 1-FP case, it can be easily seen that
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the conditions of the Appendix are satisfied for F to be admissible.l?

Note now that there is an inherent kinship between D and K types in
our model, as both are cooperative by conviction. Thus, it is natural to
assume that D is more likely to become a K if both K and H have similar
fitness advantages, for the sake of affinity. Imagine the mental burden a
honest person has to overcome to take on the cheater behavior she has
detested a life long! Besides, compared to sophistication, cooperation or not
is naturally deeper-seeded in one’s conscience. Consequently, it is the last to
be changed and there should be a more intensive population exchange
between K and D, everything else being equal.

With the above discussion in mind, we introduce the notion of kinship-
modified best-response dynamic as

0
F(p)= 77(_a>+(1—77)Fﬂ(P) if fu>fx>/fo
a

F* otherwise

where 7€][0,1). If =0, we have the original BR dynamic by Gilboa and
Matsui. If 7=1, we have a specific dynamic where in case of fx >fx >1p (i.e,,
in area (II) of Figure 2) the proportion of H remains constant while Ds are
busily converted into Ks. In between, we have a class of dynamics that cor-
respond to different degrees of kinship distortion. /7 is apparently compat-
ible for all 7 as (0, — e, @) is compatible in fx >fx >fp. We can now show:

Proposition 3 In the 1-FP case, F” is admissible and M is contained in an
asymptotically stable invariant set for all €[0,1). In the 3-FP case, there is
some 7<(0,1) such that M is contained in an asymptotically stable invariant
set for any F" with 1>7> 7. Moreover, F" is admissible for all n<(7,1).

Proof: Consider the 1-FP case. Look at Figure 3(a). As only the best
response counts, A can be partitioned in three relevant regions: (I)+ (II), (III)
+(IV), and (V)+(VI). Let us start at point a-, the BR dynamic heading
straight on the point pp=1 leads to point x* on the curve section 6*M. From
there on, the trajectory changes its direction straight towards px=1 hitting

17 Warning: This is not the case if #NE=3, since the flow is leaving away from the
curve ¢~ M. As discussed in the Appendix, any conceivable solution ¢ has then the
problem of discontinuity in the states on ¢”M. Fortunately, the relevant modified
BR-dynamics below do not have this problem.
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px =1 a” b~ pr=1 px=1 a b A cTpg=1

(2) (b)
Figure 3. Kinship-modified BR-dynamics

¢~ M on some point x%. Connecting x> with the point px=1 via straight line
yields the point x* on ¢" M. Following the BR dynamic, we get sequences
(™" D pew, (x** Daew respectively (x*")nemw on the curve sections b*M,
¢~ M, respectively a”M that are monotone ordered towards M. It is obvious
that the triangle 7. generated by the points {x*", x**~!, x*"~%} for arbitrary
n is an invariant set under the BR dynamic. Moreover, T+, C T, for all ».
Hence, L.(a") is asymptotically stable. Notice, Lo(a~) can be a non-trivial
limit cycle as discussed by Gilboa and Matsui (1991). The proof for the 3-FP
case is analogous as illustrated in Figure 3(b). If 7=1, the solution orbit in
region (II) will flow perpendicular to the boundary pp=0 till it hits the c™M
line, whenever the H-share in the starting point is not too high. Due to conti-
nuity of F” in 7, there exists some 7 &(0, 1) such that the orbit will hit ¢*M
at some point x* for all 2&(7, 1).

A closer look at the proof reveals that there is a rich class of dynamics
admitting an asymptotically stable set around M. For 7= 7, consider X' on
a*M and x*() on ¢”M as shown in Figure 3(b). Suppose there is some y on
¢~ M such that p(#(y), y) intersects the line a* M at some interior point at
the time #(y). From continuity of (-, ) there is some "> 7 such that x*(%")
lies on the line yM and p(¢(x%*(7")), x*%(%")) lies on x'M. This however implies
that there exists an attracting set around M. Consider some C'-approxima-
tion F77 of any F7” in A under Proposition 3. At least for 7E(7, 1) large
enough F” 7 can be chosen to be admissible. Hence the claims of Proposi-
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tions 1 and 2 are not empty.

Issues of Robustness

As argued previously, both the specific form of the PD game and the
assumption of perfect detection by K are used for simplicity which are not
essential for the results about persistence of cooperation in the present
paper. In particular, an imperfect detection can be roughly interpreted as a
situation of perfect detection but with then higher cost of sophistication 4.
Only if & is too high, K, and therefore cooperation, has no chance to survive.
Notice however that the introduction of the K-mutant here is meant to
show that there are a large range of situations favorable for cooperation to
prevail in a more unconscious way, as alternatives to reciprocal approaches
or other formal institutions in the sense of North (1991).

A very important question is however how robust the persistence out-
come in our now (H, D, K)-society is against further conceivable mutants.
The answer depends crucially on the nature of information, in particular

when there are new types. Without an explicitly specified dynamic we can

hardly go further beyond the following verbal account of it.18

Consider a “knowledgeable hawk” who has the same abiltiy as to infor-
mation gathering as a K but plays H unconditionally. If he is to be
identified by K as a noncooperative type, his fitness is dominated by that of
the simple H. This nasty type would not survive.

If K’s knowledge comes from decoding the Frankian signals, one can
think of some “deceiving hawk” who might invest to imitate signals of coop-
eration but always play H. If the cost of imitation is low, this type can
decimate the population of K seriously. However, if p« is too low, simple H
will dominate the costly deceiving hawk. Hence, there is likely a cycle with
all types present. However, low cost of imitation is hardly conceivable in
the signaling setting of Frank (1988), as nobody would waste energy in such
useless signals which would not survive the natural selection anyway. In the
more reasonable case of high cost of imitation, it is difficult for the
deceivers to get enough fitness compensation for their imitation costs. Put
differently, these parasites need enough K s in the population in order to

18 In a subsequent paper by Amann and Yang (1994) where replicator dynamic is
applied to a generalization of the c(+)=2px case, some of them can be substantiated.
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survive — persistence of K and D is hence not in danger.

Now, consider the Robson-type of mutation. Suppose they have to bear
some costs compared to simple Hs. Let M be the long-run stable state here.
If the invading population of Robson-mutants is very small, they have no
chance to survive in the sense of the ESS by Maynard-Smith (1982), similar-
ly as in the hawk-only equilibrium of the former (H, D)-society.!? In addi-
tion, R-mutants are likely to be identified as noncooperative type by K
which makes their survival more difficult.

The general lesson from Robson (1990) and Banerjee and Weibull (1993)
is that costless mutation in PD-like situations can only be some transient
phenomena and costly ones may entail substantial changes which is consis-
tent with findings both of Frank (1987, 1988) and of the present paper.
Hence, persistence of cooperation is generally to be expected even if more
complex, derivative mutation types are considered, as their wellbeing relies
essentially on the presence of the basic types H, D and K via parasitic or
symbiotic relationships.

Concluding Remarks

There are different ways in which people manage to realize gains from
trade in PD-like situations. Building reputations, making binding contracts
and constructing legal systems to enforce these contracts are examples of
those devices, which technically make use of the structure of repeated
games. Embracing the idea of bounded rationality,?? the emergence and
persistence of the knowledgeable cooperator discussed in the present paper
can be understood as some nature-established device solving this coopera-
tion problem. Our approach in fact deals with what Mailath (1992, conclu-
sion) describes as a structurally new mutation which not only tests the sta-
bility of current population but also changes the game being played. Basicly,

19 Only in degenerate case of costless mutation can the red-spot mutant invade the
hawk equilibrium independent of the invading population. If the population is too
small, their fitness advantage from intragroup trading can be outweighed by the
costs.

20 Frank (1988) argues that the neurological capacity of humans is a scarce good which
is to be economized on. It is less problematic to think that this economization hap-
pens in some evolutionary mode than to think that it be a calculating and optimizing
consequence of this limited capacity itself.
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we introduced a minimally sophisticated mutant and analysed its impact.
We found that there is a nonempty class of reasonable dynamics, under
which the cooperative behavior persists in the long run. Along the way, we
discovered that the natural kinship between the naive and the sophisticated
cooperators is instrumental for our result. Besides, in non-exhausitive way,
we argued that our result of persistent cooperation is robust against further
conceivable structural mutants, avoiding the weakness of Robson (1990). All
in all, we showed that cooperation can persist in a simple, natural, and
robust evolutionary model.

From a comparative static point of view, formal institutions can be
devised to further facilitate cooperation. E.g. establishing the law merchant
on Champagne fairs (see Milgrom, North and Weingast (1990)) can reduce
the information costs for K and therefore increase their fitness advantage.
This causes a shift of the fixed point M so that the population of hawks will
decrease and the average fitness in equilibrium increase. Punishing hawk
behavior via laws has however ambivalent effect. On the one hand, hawk’s
share will decrease. Simultaneously, sophistication becomes less attractive
for doves. If there is some structural catastrophe as in time of political un-
rest, war etc., such that the previous legal system is no longer in use, then
the dynamic may push the society to the hawks-only equilibrium — homo
homini lupus. This supports the assertion by North (1991) that informal
institutional constraints like customs or morals are more substantial for

stability in a society than formal ones like laws.2!

Appendix: On admissible dynamics

Our goal here is to characterize a class of the local law (vector field,
dynamic, ODE) F : A» T A which have a unique solution path (dynamic sys-
tem) @ : [0, 0) X A— A that is continuous and satisfies

@s+t(x)=ps(@:(x)) VxEA Vs, t20

and ¢#(x)|e=o=F(x). For this we need the following classical result of
ODE: 22

21 Consequently, as far as sophistication incurs costs such that naive simple behavior
patterns always have a chance to survive, evolution of informal institutional con-
straints should be an essential part of any transaction cost analysis.

22 See Arnold (1973) or Hirsch and Smale (1974) for a proof.
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Fundamental Theorem For any open Euclidean set D and F:D—- TD being
C', there is a unique continuous @:(—o0, 00) X D—D such that ¢.(x)|:=o
=F(x)Vx&D.

As discussed previously, economicly motivated dynamics are frequently
discontinuous on a submanifold in A and require a proper extension to 0A as
well. (E.g. best-response and linear dynamics mentioned.) Our main insight
here is that we still can obtain a unique economically meaningful dynamic
system as a solution if the underlying dynamic is C' upto a nowhere dense
set of similar structure of submanifold and does not behave too unfavoura-
bly in its neighbourhood.

Consider a finite partition of A, P={D:, M, Ex, i€Ip, jEIu, hE I},
where D; open in IR?, M, a connected C' 1-manifold with corners contained
in M\M=E={Ex h&I:}, M:=U;enM; and 6ACM. Let oM =M\M, oM,
denote the closures relative to the 1-manifolds. Alternaitvely, think of
U ienD:=A such that dD; consists of finite pieces of C' manifolds with cor-
ners. Hence, every point x& M; is some regular one such that there are
either exactly two sets D;,, D;, with x&€0D;, N dD;, or one such D;, in case x
€0A and the Gauss map ¢*:0D;~ TIR? is well-defined for every such regular
point, with g‘(x) being the unit length normal vector perpendicular to 7D;
at x pointing outward relative to D..

Consider a given F:A- TA. Suppose its restriction F|p; is a C' map for
all 7. For all x&€0D., define Fi(x): =1imyé5iF(y). W.rt. D;, F?at x€dD: N
M is called inward pointing, outward pointing or neutral, if <F(x), g'(x)><
0, >0 or =0. At any x€0M NdD;, the Gauss map is not defined as there
exists exactly two sets M;,, M, € P with x€ oM, N oM, < dD;, but the limits

gi{x)=lim y-x ¢'(¥) and g¥{x)=Ilim y~x g¢’(¥) can be found. Moreover, x is a
yeMi yeMiz
regular boundary point to the 1-manifolds M;, i=17, 7., so that the Gauss

map ¢g*:0M.~ TM: at x pointing outward w.r.t. M; is well-defined, that sat-
isfies <g"™*(x), gix)>=<g"*(x), gx)>=0, (i.e. they point to one direction in
the normal space of M;.) Therefore, any vector field f:M - TM for arbitrary
C' 1-manifold M can be analogously defined to be inward, outward or neu-
tral at x< 6M, where neutrality implies £(x)=0.

Then F' is called inward pointing at x<oD:N oM w.rt. D; if

{<Ff(x), g"(x)><0 for both j=1, iz if <g"(x), gi(x)>>0
(Fi(x), g™ (x)><0 for at least one j=1i, i» if <g"(x), gi(x)><0

If <g"(x), gi(x)>=0, then x is either a regular point on 9D;, i.e. there is
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some j, xEM;, or g"(x)=g"(x) and F’ is inward pointing iff Fi(x)+
—g"(x). A graphical illustration can be found in Figure 4

Let us further partition the set M into relevant subclasses: M= U M=
UsUier. M$§described in formula (5) below.

M'sFi(x)E TxoA if x€0A
M?*© Fi(x) inward if x€0A
M3 Fi(x) outard if x€0A
Mo Fi(x)=F(x) if x&£0A
xE{ M5e Fi(x) inward, F¥(x) outard, Fi(x)# F(x) if x&dA (5)
M8 Fi(x) neutral, F?(x) outward if x€£0A
M'eFi(x), F/(x) outward if x£0A
M3 Fi(x) inward, F?(x) not outward if x&£0A
|\ M°s Fi(x) F¥(x) neutral but F(x)# F(x) if x&0A

D;, D; are the relevant sets at an arbitrary x€ M here.

Now, we are about to construct an extension F:M - TA such that
FlawU F:A- TA yields us the desired dynamic system as solution. A trivial
extension by setting F=0, though gives us a dynamic system, has the un-
pleasant property to have lots of unmotivated additional FPs. Our concern
is to find an extension that provides no additional FP of F' which is defined
as some x € D; such that Fi(x)=0. We assume F is continuous at all FPs, i.
e. Fi(x)=0 implies F’(x)=0 whenever xE9dD: N dD;.

Let us assume that M$CM can be partitioned into finite maximal con-
nected subsets M?, i€, for all s. For x€M?*, s€{1,2,4,5,6}, F:=Fx)
where Fi(x) is taken from (5). For s€{3,7, 8,9}, it is obvious that no FP is
contained in M? as any FP is a continuous point of F. Moreover, OME={xk,
k=1, 7} COMUM'UM*UM?® due to continuity of Flas. If dMfNoM =8,
then Flams(x):= limyg’{g, F(y) for some s'€{1, 4, 6} and we hence have

gM2(2)  giz) gi(z) 9 g™ (2) g¥(2)

Mo 6@ )

Figure 4. Directions at corners
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F(x3)E T:LMS, k=1, r. VxE M5, the relative interior to M3, Fe TuM¢ is
defined to be the linear connection between F(x&), k=1, », w.r.t. the mani-
fold M523 If oM:sU M #8, F|s: can be defined arbitrarily. For all s, 7, an
arbitrary C'-extension F:M{->TMS is called consistently directed if 0
F(M$) and there is no more than one k<{/, »} such that F(x%)E Txs, M
is outward respectively inward pointing w.r.t. M$.

Let P(x)={BE P : x< [} denote the relevant sets at x. For any x€ M,
if there is a unique € P(x)\oM for which F*°(x) is inward pointing, then
F(x) : = F(x). Otherwise F(x):0. Finally, a C' dynamic F defined on A\#M
with only continuous FPs is called to be (zero free) consistently extendable to
M if there is a F:M— TA as above such that (a) F|y: is consistently directed
for all s and 7 and (b) there is exactly one € P(x)\oM at any x € oM which
is no FP such that F%(x) is inward pointing.

Main Theorem Suppose P is a partition of A as characterized above with
MB3=M®°=8. Suppose F : A—» TA with F being C" on open sets D;, i< Ip, and
Fluw, is consistently extendable to A\U.D;. If Flau.p.=F which is one con-
sistent extension as characterized above, then F is an admissible dynamic, i.e.
there is a solution ¢ :[0, )X A— A such that

psie(x)=0s(pe(x)) VxEA, Vs, t20

and ¢ is continuous in (t,x) and right differentiable in t with ¢ (x)=
F(e:(x))VxEA, t=0.

Proof: From the Fundamental Theorem we know that there is a unique
maximal solution ¢.(x):(ax, bx)— D; for each xE D, i€ I, with ax<0, bx>0
such that ¢ is a C' dynamic system with ¢:(x)=F(¢.(x)), VxED; and t&
(a@x, bx).

If F* be inward pointing at some x < aD;, there is then a unique solution
path ¢(%) for some £ &D; such that @a:(£):lims-cz+9:(%¥)=x and
@1(X)|¢=az=F*(x). If there was another @+ ¢ with lim¢ .. @(x)=x=@a:( %)
as well, where &.(x) is defined for the maximal interval (ax, bx), X €D;, ax
> — oo, then there is a contradiction to the property of the solution of F on

23 More precisely,
o) s =l (LB Rty + 2 )y ()
where ¢ : M3~ (ay, a2), $ulx: TMi- T, @2) are diffeomorphisms. See Arnold (1973)
for notations.
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D; being continuous in the initial condition (i.e. ¢ being continuous in x).
Analogously, solutions for any Flars: M- TMS posses similar properties.

We are now about to show that ¢.(x) : [0, c0) = A exists uniquely for all
xEA, which is continuous and ¢3(x)|:=e=F(x). In fact, if bx=co, this is
trivially true. If bx< o for some xE a€ P(x)\oM, then F *(ps.(x)) is neces-
sarily outward pointing at Po{x)EM w.rt. a. By construction, there is
exactly one RE P(x)\oM, B+a, such that F* is inward pointing w.r.t. B.
Define @eso.(x)=@¥@s:(x)) for all t<[0, b) where [a, b) is the maximal
interval of corresponding solution path in 8. If b=co, the job is finished.
Otherwise repeat this procedure.

Now, it remains to prove that the so constructed unique ¢ : [0, )X A-
A is continuous in x in addition. This is trivially true for xEA\M. For x€
M, which is not a FP, consider @:(x7), xE2" x, with x2€a and a=P(x).
Since only one € P(x) has the property of F* being inward while F* being
outward for all @€ P(x), e+ 8, and since the solution ¢ is continuous in ¢,
?:(x8—= p.(x)E B for all a€ P(x). This completes the proof.

The last point made in the proof is also exactly the reason why M*®, M ®
are excluded in the main theorem: with extension method used here, the
above constructed solution path ¢ would no longer be continuous in x.
Notice that even BR-dynamic may be not admissible in this sense. An impor-
tant implication of the main result above is that the Theorem of Poincare-
Bendixson can be generalized for admissible dynamics defined on some
compact set as well.

Theorem (Generalized Poincare-Bendixson) Suppose F is C Lon A and
admissible. Then, for any x €A, Lo(x) contains no equilibrium implies
Luo(x) is a cycle.

Proof: Suppose ¢:(x)EA V't large enough regardless whether p:(x)NoA=
g, then the original P-B-thoerem applies, a proof of which can be found in
Hirsch and Smale (1974). If however thereisa y= @s(x)€ 0A for some s with
yE&L,, consider the flow @.(y) ¢= 0. If there is no >0 so that e:(¥)=y,
then y& Lo(x) as Lo(x)=Lu(y). Hence, Lu(x) is a cycle of period A=min
{z: @:(y)=y}. If there is no such y€ ¢(x) N Lu(x) N A, then there necessar-
ily exists some s >0 such that @s+:(x)EA for all £>0.
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AX Rt &R BEH

BEENSERGENTRZEL

BEE

R FERE LA S it & BB SE AT

m =

wEBHY—EPLHER B EOABRE “NEER" (prisoners’
dilemma) THSTERE - ABXEK—HETIHBE “F84” & L)
BT HERETREES B » HFANSEREREEREA
RBRFER AR BB R BB AR LB RSB o FMIy LI
BEITH A UURPRENE S HENERE AN FEFE » IR
REAPBRRKN—HEBE “TTAl” R “AIEH” BHNERHE - HEEE
B2 BRFIERERMBESIFRETEEA AR R S HHEHREEA -

MatdE : KA HRe BT HRTHREAL  SMRE



