(AX Kt G RHBET])
BT=8%UHA (90/12), pp. 401-416
©rhyFebe o 1A S it & R R R

Alternative Proof for the Consistency of
the KPSS Tests Against
Fractional Alternatives

Wen-Jen Tsay
The Institute of Economics

Academia Sinica, Taiwan

ABSTRACT

This paper investigates the asymptotic properties of the semipara-
metric long run variance estimator when we demean or detrend a station-
ary I(d) process. The analytic results are used to show that the KPSS
(Kwiatkowski, et al., 1992) test of the 7(0) null is consistent against /(d)
alternatives when the growth rate of the bandwidth parameter / is
O( T”“).
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1. Introduction

There is much research concerning the semiparametric estimation of
the long run variance 2=2>7_.7; of a weakly dependent process ¢;, where
7; is the autocovariance function of €, at lag 7. For example, to account for
the autocorrelation in €;, Newey and West (1987), Andrews (1991), and Han-
sen (1992) considered the long run variance estimator, 2, to be defined as
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—~ T T
Q=T S ei+2T" ‘2/f(l+1> S e, 1)

where e; can be the raw data (e;) itself, or the residuals from the regression
model with stochastic or deterministic trends; the kernel weights £(.) are
assumed to satisfy some specific conditions (for more details, please refer to
Andrews, 1991, p.821); and / is the bandwidth parameter and depends upon
the sample size 7. The major concern of the current literature is to find the
conditions under which we can prove that Lo} _b, 2. However, the
asymptotic properties of 9, under various choices of kernel function and
bandwidth parameter are also of interest to researchers.

We have recently witnessed fast-growing studies on the I(d) process,
that is, the integrated process of order d where d is a fractional number.
The main feature of the I(d) process is that its autocovariance function
declines at a slower hyperbolic rate (instead of the geometric rate found in
the conventional ARMA processes). Many test statistics have been
reevaluated when the data generating process (DGP) is an I(d) process. For
example, Diebold and Rudebusch (1991) showed that the simple Dickey-
Fuller unit root tests have low power against /(d) alternatives. Moreover,
Lo (1991) used the modified rescaled range (MRS) statistic to test the 7(0)
null of the asset return against /(d) alternatives, where d € (—0.5,0)U(0,
0.5).

However, Lo (1991) only demonstrated the exact proof for cases d >0
when £(.) is the Bartlett kernel. The proof for cases d <0 was omitted and
left to the readers. Nevertheless, it is questionable to apply Lo’s arguments
to cases d <0, because the bandwidth parameter /=o0(T) chosen by Lo
(1991) is not accurate.

Another example is when Lee and Schmidt (1996) analyzed the power of
the KPSS tests against /(d) alternatives by calculating the asymptotic prop-
erties of 2, as e is an I(d) process. However, instead of investigating fo}
itself, Lee and Schmidt (1996) utilized the Bartlett kernel to study the popu-
lation counterpart of 2, i.e., 2, which is defined as

‘ J
=i 28(1-74y) 7

Therefore, the proof derived by Lee and Schmidt (1996) is not complete,
because they did not show that the difference between 9, and £, diminishes
asymptotically.
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The results mentioned previously show that the asymptotic properties
of £, are crucial to determine the consistency of the KPSS and MRS tests
against /(d) alternatives. We thus investigate the asymptotic properties of
2, when the DGP is the I(d) process, and use the analytic results to prove
the consistency of the KPSS tests against /(d) alternatives. Moreover, to
extend the coverage of our analysis, we impose very mild restrictions on the
kernel function. Our results reveal that the bandwidth parameter must be
o( T'*) to ensure the consistency of the KPSS test against /(d) alternatives.
Nevertheless, Andrews (1991) showed that the Bartlett kernel cannot result
in an efficient long run variance estimator for the weakly dependent process
if 7 is not O(T"®). To obtain an efficient long run variance estimator under
the 7(0) null and sustain the consistency of the KPSS tests against 7(d)
alternatives, we cannot use the Bartlett kernel. In fact, the joint use of the
Parzen kernel and /=0(T"®) is what we need. This explains why we
extend the findings in Lo (1991) and Lee and Schmidt (1996) where they only
considered the Bartlett kernel.

2. The Model and The Main Results

KPSS (1992) used their test as a test for trend stationarity. That is, they
tested the hypothesis that deviations of a series X; from a deterministic
trend is short memory. Let e; be the residuals from a regression of X; on an
intercept and a time (¢), and let S; be the partial sum of e:: Si=>_1¢;, t=
1,..., T. The KPSS test is expressed as

T —~
Ne— T—ZEIS?/QL

Based on the construction of the KPSS test, we note that the term £, is
the key ingredient of the KPSS statistic. Since the paper’s objective is to
consider the power of the KPSS tests against /(d) alternatives when the
data is generated as X:=pu+ St + €, and ¢ and B are arbitrary constants, we
first investigate the asymptotic properties of 2, when we demean or detrend
a stationary I(d) process. We then use the asymptotic properties of 2,—
and £2; to establish the consistency of the KPSS test against 7(d) alterna-
tives. Moreover, we impose very few restrictions on the kernel function to
extend the applicability of our results in empirical applications. Throughout
this paper, we only require the kernels to satisfy the following conditions.
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Assumption 1. (i) For all x € (0, 1], k(x)<1; k(x) is continuous for almost all
x€(0, 1]; Spk(x)dx < co. (i) |k(x) — k(¥)| < Clx —y| for some C>0. (iii) k(x) is
a monotonic decreasing function, and there is only a finite number of points
in (0, 1] such that k(x)—k(y)=0, for some x<y.

Conditions (i) and (ii) of Assumption 1 are standard and have been used
in Anderson (1971) and Andrews (1991). Condition (iii) of Assumption 1 is not
as restrictive as it looks, because it covers some kernels, including the Bart-
lett and Parzen kernels.

Before presenting our theoretical results, let us first review some basic
properties of the I(d) process. A process € is said to be an autoregressive
fractionally integrated moving average process of order p, d, q, denoted as
ARFIMA (p, d, q) or I(d), if it is defined as

#(L)(1— L)*e:=06(L)a., (2)

where L is the usual lag operator; ¢(L) is a pth degree polynomial; d is the
differencing parameter which can be a fractional number; 6(L) is a gth
degree polynomial; the zeroes of #(L) and §(L) lie outside the unit circle;
¢#(L) and 6(L) have no common zeroes; and the innovation sequences a: is a
white noise with zero mean and variance o% The fractional differencing
operator (1— L)% has the following binomial expansion: (1— L)%= 50¢;L’,
where ¥,=I'(j—d)/'(j+1)I'(—d), and I'(+) is the gamma function. The
fractional white noise process is defined as

(1 — L)dﬁt =da:,

which is the simplest case of the ARFIMA model. This process was first
introduced by Granger (1980, 1981), Granger and Joyeux (1980), and Hosking
(1981). They showed that €. is stationary when ¢ < 0.5 and is invertible when
d > —0.5. Please refer to Baillie (1996) for more details.

Given the preceding conditions on the stationary ARFIMA (p, d, q)
process, Hosking (1996, Theorem 8) showed that the exact order of magni-
tude of Var(27-1e:) is equal to O(T'**¢). This asymptotic result is crucial
to the derivation of our theoretical results and was established by Hosking
(1996) with no more than a second moment condition on a:.

Lemma 1 presents the asymptotic properties of £,—Q, and 2,, which
are the cornerstone of our analysis.

Lemma 1. Given that E(at)< oo, and k(.) satisfies the conditions in Assump-
tion 1, then as | - oo, T — oo, I/T - 0, we have the following results:
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1. ©— 2= 0,(IT*"), when d€(0.25,0.5).
2. 8- 2=0,(IT*(log T)*%), when d € (—0.5,0.25].
3. The exact order of magnitude of $2. is equal to O(1*?).

The proofs of Lemma 1 and the following Theorem 1 are in the Appen-
dix. Lemma 1 indicates that we cannot replace £; with £, unless we set
some restrictions on the growth rate of /. For example, /=o(7"'"?¢) must be
set when d € (0.25, 0.5); otherwise, the difference between 2, and £; will not
converge in probability to zero. Furthermore, if the exact order of magni-
tude of / is O(T®), which was recommended by Andrews (1991) when the
Parzen kernel is used, then we cannot simply replace Q, with 2, when d >
0.4. In addition to the above restriction, we note that the order of magnitude
of £, must exceed that of £,—Q,, or we cannot replace 8, with @, either.

The results in Lemma 1 hold for any kernel function which satisfies the
conditions in Assumption 1. Therefore, Lemma 1 greatly extends the finding
in Lee and Schmidt (1996) where they only considered the Bartlett window.
Moreover, following equation (6) of Lee and Schmidt (1996, p.289), we note
that 2,//**=0(1) and is bounded away from zero.

Given the preceding results, we realize that the usual “consistency”
properties of the long run variance estimator for the weakly dependent
process cannot be trivially extended to that of the stationary /(d) process.
Moreover, it is quite odd mentioning the word “consistency” for the
semiparametric long run variance estimator of the I(d) process. The reason
is that the exact order of magnitude of £; is O(/*?). This implies that £
either diverges without bound or converges to zero when the DGP is the
I(d) process with d € (—0.5,0) U(0, 0.5). However, with the help of Lemma 1
and the restriction that /=o0(T"*), the consistency of the KPSS tests against
I(d) alternatives can still be established.

Theorem 1. Given that E(at)< o, k(.) satisfies the conditions in Assumption
1, and 1=0(T"™), then as T - oo, the KPSS test of the I(0) null is consist-
ent against 1(d) alternatives with d € (—0.5,0)U(0, 0.5), no matter whether
the null hypothesis is level stationarity or trend stationarity.

Theorem 1 reveals the conditions under which we can establish the con-
sistency of the KPSS test of the I(0) null against I(d) alternatives. In fact,
the condition that /=o0(7T"*) is not as restrictive as it looks, because /=
O(T"5) is popularly recommended in the calculation of £2; when the DGP is
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a weakly dependent process. For example, the Parzen kernel can be em-
ployed when the exact order of magnitude of / is O(T'®). In particular,
when the DGP is the 7(0) process and the exact growth rate of / is O(T%),
O, attains its efficiency level when the Parzen, or Quadratic Spectral, or
Tukey-Hanning kernels are used. However, Quadratic Spectral and Tukey-
Hanning kernels do not satisfy the conditions in Assumption 1.

On the other hand, when /=0(T"*) is imposed, the Bartlett kernel
should not be used according to the results in Andrews (1991). His paper
showed that the Bartlett window cannot result in an efficient long run vari-
ance estimator for the weakly dependent process when the exact order of
magnitude of / is not O(7T"?). Therefore, in order to obtain an efficient long
run variance estimator under the 7(0) null and sustain the consistency of the
KPSS tests against /(d) alternatives, we should not employ the Bartlett
kernel. This also explains why we extend the findings in Lo (1991) and Lee
and Schmidt (1996) where they only considered the Bartlett kernel.

3. Conclusion

This paper investigates the asymptotic properties of the semipa-
rametric long run variance estimator when we demean or detrend a station-
ary I(d) process. The analytic results are used to show that the KPSS test
of the 7(0) null is consistent against /(&) alternatives when the growth rate
of the bandwidth parameter / is o( 7"*). Moreover, the consistency of the
modified Durbin-Watson (MDW) test of 7(1) null against fractional alterna-
tives proposed by Tsay (1998) can also be proved. Therefore, our analysis
provides theoretical support underpinning the practical use of the KPSS
tests and other related test statistics against fractional alternatives.

Appendix

Two I(d) processes are used in the following proofs. The first one is the
stationary I(d) process €:, defined in equation (2), with differencing parame-
ters d such that —0.5<d <0.5. We then define one nonstationary I(1+d)
process by integrating e;:

Yt=Yt-11 €.

We also assume, without loss of generality, that the initial values of proces-
ses € and yo are both zero. Hence, y: can be viewed as the partial sum of ;;
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ie., ys=22t1€. Obviously, the order of integration of the nonstationary
process y: lies between 0.5 and 1.5.

A.l. Proof of Lemma 1I:

We divide our analysis into two parts. The first part considers the cases
where the DGP is X; =+ €:. The second part deals with the cases where the
DGP is X:=p+ Bt +€:.

If X;=pu+ e, then we obtain

T
er—=€— E=€E+— T—lt2=let’
and €= 0,(T%°%). From equation (1), we have
Q=T 2(6t‘€)2+2T 12k(l+1 ) 5'_. (et €) (&-;— €).
Moreover, if we define
o= g2 2k ) Be  am=atzgi(7iy)e,

then we can divide £,— £, into two parts:
QI—Q1=(gz— Qz) +(.Q~I_Ql).

To understand the asymptotic property of 0,— 9, we first discuss the part
21— 0.
Given the preceding definition for .Ql and £,, we have

0 0= AT Fet T Hi(717), 3 (e}
+(& )2{ T—‘§1+2T"zl:k(7_{—1> _éll}

szle'T 'St T- ‘2k< ) S (et ees)

t=j+1

+|€|2 121+2 j=1 ( +1 >=J+l
<tel| T Fel+| T i(rhr) B e+ T Bk 7). B e )
HleFiteTg 21

—9| g|(\ T'Ze

1M1+ 1M1)+ &P 142N,
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However, we note that

N=T"3% 3 1=T~ {Z‘,ij+l+l(T—l)}:T‘1<ZT—£§'~I—>=O(1).

J=1t=j+1

Moreover, we observe that

l+1> Z.&=T Z;‘ (7“-“)(?#—%)

=1 12k<1+1>y’“ 3 ( il)
— M+ M

M=T- ‘Ek(

For M,, we note that

Sy v =t 12’f<z+1)

li(74)

-—-yTSva(x)tdx:op( 7o),

<3/Tl

and we prove that M= 0,(/T% ). To calculate the asymptotic behavior of
M, we apply Abel’s transformation:

é Uivi= ZU(Uz 'Ui+l)+ Un'Un,
where Ur=u1+u2+. ..+ ux for k=1,2, ..., n. Furthermore, we note that
“1v J
M= T B o
If we define
- . T
U=yi+y2+...+y; and v,—k<l+1>,
then we have
1 rp)u= B Ul (7)) + v ) -
277 o= ZU{r(77) - D k(7L )=t B

We observe that
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and

{rke)-o-il ) ) s Smo

Furthermore,
U= Zy, Op(ll 5+d)

Combining the preceding results, we prove that Ez= Op(I***%).
We also note that

S J J+1 )}

=S ud(7h) - M) =752
where C is a positive constant. Without loss of generality, we assume C >1
throughout this paper. We also observe that

:Z‘.:UJ Zéyk—Z(l Nys= Zly, gjyj
_0(125+d).

Thus, we prove that Ei= 0,(7***%) and the order of magnitude of E; domi-
nates that of E.. This implies that

Mz——— Op( T—l 11.5+d),

and we prove that M= 0,(IT%%%).
We can similarly show that

M =0,(IT*°%%).
Given the preceding results, we have

Ql_ le Op( Td—0.5) Op( ZTd—o.s) + Op( TZd—l) 0( l)
= 0,(IT*1).

Let us discuss the remaining part 2,— ;. We note that 2,—Q2,=8,
—E(2)+ E(£)— Q.. First, we have

E(Q)-Q2=E {CO+22k<[+1>C’} {70 +2,z::1k(ﬁ—> }
=2ty o)~ 2B )
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=—2T" 12/%( 1)]7/,

<2 T_IJEIIJ'?’:'!

T-10(7%*) it d>0,
=1T7'0(l(log?)) if d=0,
T71o(7%4) if d<o,

since 7, decays geometrically as d =0. At least we can say that 7;=0("?) as
7 —~ oo and d=0.
Second, we note that

G~ E(@)={ ot 233717 )es} - Ef vt 28 4( 27 )}
_{CO—E(CO)}HZ:/f(Hl){c, E(o)).

However, under the restriction that E(a?) < oo, the results of Hosking (Theo-
rem 3, 1996) and Chung (Corollary 1, 1996) showed that

O(T*?) if d>0.25,

V‘”(C")z{o( T-logT)) if d=0.25.
Moreover, the preceding results do not depend on j. Thus, we have

O(T?Y) if d>0.25,
O(T*(ogT)*®) if d=0.25.

For cases d <0.25, Var(c;) can be uniformly bounded by O(7*(log T")), and
we have

¢~ E(c)=]

Op(T?7) if d>0.25,

Ci— E(Cj)z{op( T“"s(log T)0~5) if d<0.25.

Given the preceding results, if d >0.25, then

T 2“2k< i e B T g |H( 54 | 1e - £l
=33 k{727 )| e B

= Op(l).

For d<0.25, the reasoning is similar and is omitted. Overall,
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L O,(IT?*7) if d>0.25,
P ( >{C’ E(ey)) _{Op(lT""s(log T)%) if d<0.25.

Thus, we have

Q- 0<|0-8l+|0— 2] X
<|Q—Q|+|8,— E(Q)|+|E(D)— Q)

. {Op(lT“'l) if d>0.25,
Lo, (IT*%(log T)*®) if d<0.25.

and items 1 and 2 of Lemma 1 are proved.
To prove item 3 of Lemma 1, we define

Ui=7+7+...+7; and Uj:k(ﬁ)'
We then have

Bl S0l ) (ol )

Therefore, we have

.Qz= 70+2A,+ ZB’

For the term A’, we note that

and
-1 -1 4 -
EIUJ:Z?ZJ 2(1—/)79
For the term B, we note that
, o) if d>0,
’ o1) if d<o,

and we prove that
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oY) it d>0,
B'=:0(") if d=0,
o™ it d<o.

Thus, we have

.Ql—ro+22k( Z+1)7J+2B <vo+25—+ 2 U;+2B

l+1

<Cyro+2+—+ 2(1 Nvi+2B

l+1
C : :

_ \ _— .

_(l+1’l+17"+21+12(1 N7:+2B

C C

I+17° T 71
C

1
- l+17°+ ZJCr‘l Var(Z}let)—FZB'

I

{170+ZJ§(1— j)yj}+ZB'

=0+ 0O +2B =0(*).

Item 3 of Lemma 1 is proved. Note that O(/%¢) is the exact order of magni-

tude of £, because the exact order of magnitude of Var(Zi-ie:) is O(/**29).

The choice of constant C will not change the asymptotic properties of ..
For the second part, we note that X;=pu+ 8t + €, and we have

ee=€e——(B—PB)(t— 1),

where 8 — 8= 0,(T%"'%). We only calculate 2,— Q,, because the asymptotic
properties of £,— £, will not change when the DGP is X,=u+ 8+ e¢.. Fol-
lowing the previous analysis, we obtain

G=T"Fle—e~(—8) (1— DY

127 2k(747), 2 fe— e~ (B=8) (t= D)) {er-s— €~(B =)
(t—j— 1)},

and

—~ ~ T
G- Gi<2| | H T3

Hrgi(L) 2 e+

Hrgi(4), 2 e

t=j+1

)
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1427 ‘2/:(l+1> > 1

t=j+1

+|ePF|T

+28-8l[| T g (- De

() e e

t=j+1

|

+215—8I|1- lzk(m) 31 (t—j— De,
D)+ 54(747), 2 ¢ D]
+218-Bllel|T- 12k<l+1) 3 (=i )

+ 18K 717), 2 (- De—i- 1)

t=5+1

+215-8l1el[| T

1B | T S~ T

After some calculations, we prove that the order of magnitude of each term
on the right-hand side of the inequality sign are bounded by O,(/T%¢""). The
remaining proof is similar to the previous analysis. The details are omitted.

A.2. Proof of Theorem I:

For cases 0<d<0.25, if we set /=0(T"°%), then O,(IT **(log T)*%)=
0»(1). Moreover, the order of magnitude of £, dominates that of
0,(IT*5(log T)*®). Thus, 2; can be replaced by £.. The proof of Lee and
Schmidt (1996) is still correct and the details are omitted.

For cases d >0.25, Lemma 1 implies that

Q,— O(1*)=0,(IT*7).

We also note that 37-,S2= 0,( 72*2). From Lemma 1, we note that ,//>*
— /1% = 0,(1'72¢T?* ) =0,(1). Moreover, £2,/I>*® is bounded away from
zero. This implies that 2,//?¢ is also bounded away from zero. Thus, we
have 2.,/1%¢ ~2, 0,/1*¢=0(1). We then have

T T
- TZd T—Z-—Zdtglsg B T2d T_Z_Zdtzﬂst? TZd T—Z 2d2 B l O (1)
7= sz - ZZd Z_stjl ZZd l_ZdSQ —\/ b .

This implies that 7: —2> oo as d >0.25.

For cases —0.5< d <0, we note that £2,=0(/?*%). This implies that £,
also converges in probability to zero under this circumstance. Thus, we have
to find the conditions under which the order of magnitude of £; dominates
that of 0,(IT~"%(log T')**). Otherwise, we cannot simply replace £, with 2..
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In other words, we need to specify the restriction on /, such that
[UT*(log T)**)=1*""'T*(log T)™** » oo as [ and T both approach
infinity. It is not difficult to figure out that /=o0(7T"*) is the restriction that
we need. Given /=o0o(T"*), we can then follow the preceding arguments in
the proof of the case 0<d <0.25. That is, we can replace £, with £, and
follow the proof of Lee and Schmidt (1996). Combining the results of the
preceding three cases, we prove the consistency of the KPSS test against
I(d) alternatives.
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HERKPSSEE it at = 11 BB & R
S 22 53 Wy R 5 2 — Bk

£23UH

FPR B HSE AT RIS B

H =

EXEAN P 2L R AR RE L, (semiparametric long run vari-
ance estimator) fE R FIEER 3 2= BT (stationary fractionally inte-
grated process) WIRRIRMEE » E—FHBH KPSS (Kwiatkowski, et al,
1992) EMT B IBEREFBE S EBHETIZR—BHmEZ B

4 » Hefz —$5H bandwidth parameter FEEE AR BUIS HIHTE B L EERER
BRIy 2 — KRS ©
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