調查研究—方法與應用期刊
logo-調查研究—方法與應用期刊

調查研究—方法與應用期刊
logo_m-調查研究—方法與應用期刊

    跳至中央區塊/Main Content :::
  • 關於
  • 投稿須知
    • 投稿須知
    • 審查流程
    • 編輯政策
    • 線上投稿
  • 編輯委員
  • 各期內容
  • 倫理須知
  • 訂購與聯繫
  • 人社中心
EN
人社中心
search
調查研究—方法與應用
TSSCI 一級期刊
  • Home
  • 各期內容
  • 2002年10月《調查研究——方法與應用》第12期
  • Facebook
  • line
  • email
  • Twitter
  • Print
2002年10月 12期
潛在變項選擇模型結構方程模型之最大概似估計
發刊日期/Published Date
2002年10月
中英文篇名/Title
潛在變項選擇模型結構方程模型之最大概似估計
Maximum Likelihood Estimation of Structural Equation Models with Latent Variable Selection Model
論文屬性/Type
研究論文 Article
作者/Author
鄭中平, 翁儷禎
Chung-Ping Cheng, Li-Jen Weng
頁碼/Pagination
5-27
摘要/Abstract

本研究目的在以MCEM 算則(Monte Carlo expectationmaximization Algorithm)進行潛在變項影響資料遺漏時結構方程模型的參數估計。結構方程模型分析常需實徵資料驗證研究者的假設模型,資料發生遺漏是其收集過程經常遭遇的情形。遺漏可能與外顯變項有關,但亦可能與潛在變項有關。Muthén、Kaplan與Hollis(1987)描述了外顯變項或潛在變項影響遺漏與否的遺漏機制模型,並發現多數情形下為不可忽略遺漏,現行之遺漏值處理法未必適用。因此,本研究針對Muthén等人之遺漏機制模型發展結構方程模型參數估計方法,並以實例比較其與常用遺漏值處理法的差異,初步發現本研究建議方法在潛在變項影響資料遺漏情形下表現最佳。

The Monte Carlo expectation-maximization algorithm was proposed for parameter estimation with latent variable selection model in structural equation modeling. Latent variables are allowed to influence data missingness in latent variable selection model. This missing mechanism in most cases is not missing at random. The missing data treatment methods available at present therefore may not be applicable and new development is called for. An empirical example of latent variable selection model was presented. The results indicated that the proposed method yielded satisfactory parameter estimates.

關鍵字/Keyword
非隨機遺漏, 選擇模型, 結構方程模型, 最大概似法, 潛在變項
nonignorable missingness, selection model, structural equation modeling, maximum likelihood estimation, latent variable
學科分類/Subject
心理學
Psychology
主題分類/Theme

DOI
https://doi.org/10.7014/SR.2002100001
檔案下載/Download
全文下載
  • 關於
  • 投稿須知
  • 編輯委員
  • 各期內容
  • 倫理須知
  • 訂購與聯繫

115台北市南港區研究院路二段128號

Tel: (02)2787-1816 Fax: (02)2788-1740 Email: srcsr@gate.sinica.edu.tw

© Copyright 2025. RCHSS Sinica All Rights Reserved.隱私權及安全政策版號:V1.1.2